Newsletter sign-up
View all newsletters

Enterprise Java Newsletter
Stay up to date on the latest tutorials and Java community news posted on JavaWorld

Sponsored Links

Optimize with a SATA RAID Storage Solution
Range of capacities as low as $1250 per TB. Ideal if you currently rely on servers/disks/JBODs

How the Java virtual machine performs thread synchronization

Understanding threads, shared data, locks, and more in Java bytecode

  • Print
  • Feedback

All Java programs are compiled into class files, which contain bytecodes, the machine language of the Java virtual machine. This article takes a look at how thread synchronization is handled by the Java virtual machine, including the relevant bytecodes. (1,750 words)

This month's Under The Hood looks at thread synchronization in both the Java language and the Java virtual machine (JVM). This article is the last in the long series of bytecode articles I began last summer. It describes the only two opcodes directly related to thread synchronization, the opcodes used for entering and exiting monitors.

Threads and shared data

One of the strengths of the Java programming language is its support for multithreading at the language level. Much of this support centers on coordinating access to data shared among multiple threads.

The JVM organizes the data of a running Java application into several runtime data areas: one or more Java stacks, a heap, and a method area. For a backgrounder on these memory areas, see the first Under the Hood article: "The lean, mean virtual machine."

Inside the Java virtual machine, each thread is awarded a Java stack, which contains data no other thread can access, including the local variables, parameters, and return values of each method the thread has invoked. The data on the stack is limited to primitive types and object references. In the JVM, it is not possible to place the image of an actual object on the stack. All objects reside on the heap.

There is only one heap inside the JVM, and all threads share it. The heap contains nothing but objects. There is no way to place a solitary primitive type or object reference on the heap -- these things must be part of an object. Arrays reside on the heap, including arrays of primitive types, but in Java, arrays are objects too.

Besides the Java stack and the heap, the other place data may reside in the JVM is the method area, which contains all the class (or static) variables used by the program. The method area is similar to the stack in that it contains only primitive types and object references. Unlike the stack, however, the class variables in the method area are shared by all threads.

Object and class locks

As described above, two memory areas in the Java virtual machine contain data shared by all threads. These are:

  • The heap, which contains all objects
  • The method area, which contains all class variables

If multiple threads need to use the same objects or class variables concurrently, their access to the data must be properly managed. Otherwise, the program will have unpredictable behavior.

To coordinate shared data access among multiple threads, the Java virtual machine associates a lock with each object and class. A lock is like a privilege that only one thread can "possess" at any one time. If a thread wants to lock a particular object or class, it asks the JVM. At some point after the thread asks the JVM for a lock -- maybe very soon, maybe later, possibly never -- the JVM gives the lock to the thread. When the thread no longer needs the lock, it returns it to the JVM. If another thread has requested the same lock, the JVM passes the lock to that thread.

  • Print
  • Feedback

Resources
  • The book The Java virtual machine Specification (http://www.aw.com/cp/lindholm-yellin.html), by Tim Lindholm and Frank Yellin (ISBN 0-201-63452-X), part of The Java Series (http://www.aw.com/cp/javaseries.html), from Addison-Wesley, is the definitive Java virtual machine reference.
  • Previous "Under The Hood" articles:
  • "The Lean, Mean Virtual Machine" Gives an introduction to the Java virtual machine.
  • "The Java Class File Lifestyle" Gives an overview to the Java class file, the file format into which all Java programs are compiled.
  • "Java's Garbage-Collected Heap" Gives an overview of garbage collection in general and the garbage-collected heap of the Java virtual machine in particular.
  • "Bytecode Basics" Introduces the bytecodes of the Java virtual machine, and discusses primitive types, conversion operations, and stack operations in particular.
  • "Floating Point Arithmetic" Describes the Java virtual machine's floating-point support and the bytecodes that perform floating point operations.
  • "Logic and Arithmetic" Describes the Java virtual machine's support for logical and integer arithmetic, and the related bytecodes.
  • "Objects and Arrays" Describes how the Java virtual machine deals with objects and arrays, and discusses the relevant bytecodes.
  • "Exceptions" Describes how the Java virtual machine deals with exceptions, and discusses the relevant bytecodes.
  • "Try-Finally" Describes how the Java virtual machine implements try-finally clauses, and discusses the relevant bytecodes.
  • "Control Flow" Describes how the Java virtual machine implements control flow and discusses the relevant bytecodes.
  • "The Architecture of Aglets" Describes the inner workings of Aglets, IBM's autonomous Java-based software agent technology.
  • "The Point of Aglets" Analyzes the real-world utility of mobile agents such as Aglets, IBM's autonomous Java-based software agent technology.
  • "Method Invocation and Return" Explains how the Java virtual machine invokes and returns from methods, including the relevant bytecodes.