Newsletter sign-up
View all newsletters

Enterprise Java Newsletter
Stay up to date on the latest tutorials and Java community news posted on JavaWorld

Sponsored Links

Optimize with a SATA RAID Storage Solution
Range of capacities as low as $1250 per TB. Ideal if you currently rely on servers/disks/JBODs

Exceptions in Java

The full story of exceptions in the Java language and virtual machine

  • Print
  • Feedback

Page 5 of 5

A graphical representation of the method invocation stack for drinkCoffee() is shown in Figure 3. In this figure, the method invocation stack is shown on the right and the corresponding Java stack is shown on the left. The Java stack is where methods keep their state inside the Java virtual machine. Each method gets a stack frame (or frame), which is pushed onto the stack when the method is invoked and popped from the stack when the method completes. The frame is an area in memory that contains the method's local variables, parameters, return value, and other information needed by the Java virtual machine to execute the method. In Figure 3, the stack is shown growing downwards. The top of the stack is at the bottom of the picture.

Figure 3. The method invocation stack for drinkCoffee()

When a method completes by executing a return statement, or by successfully executing the last statement in a method declared as void, it is said to complete normally. The Java virtual machine pops the returning method's stack frame, and continues executing just after the method invocation in the calling method. The calling method becomes the current method and its stack frame becomes the current frame.

When a method throws an exception that it doesn't catch itself, it is said to complete abruptly. Methods do not return a value when they complete abruptly, though they do pass along an exception object.

For example, when the drinkCoffee() method throws a TooColdException, it completes abruptly. Because the exception isn't caught by drinkCoffee(), the Java virtual machine pops drinkCoffee()'s stack frame. It then examines the next method up the invocation stack, in this case the serveCustomer() method of VirtualCafe, to see if it has a catch clause prepared to handle the exception.

Here's the code for VirtualCafe:

// In Source Packet in file except/ex7/VirtualCafe.java
class VirtualCafe {
    public static void serveCustomer(VirtualPerson cust,
        CoffeeCup cup)throws TemperatureException,
        UnusualTasteException {
        try {
            cust.drinkCoffee(cup);
        }
        catch (TooColdException e) {
            System.out.println("This coffee is too cold.");
            // Add more hot coffee...
        }
    }
}


The serveCustomer() method above does indeed surround its invocation of drinkCoffee() with a try block that has an attached catch clause for TooColdException. So the exception stops here. The Java virtual machine makes the serveCustomer() method's stack frame current and continues execution at the first statement inside the catch clause. The program prints out:

This coffee is too cold.


If variable i in the drinkCoffee() method above happens to be set to the value of 2, the switch statement will instantiate and throw an UnusualTasteException. When this exception is thrown, the Java virtual machine will first check the catch clauses of the try block that surrounds the switch statement. In this case, no catch clause matches the thrown exception. The virtual machine will then pop drinkCoffee()'s stack frame and examine the serveCustomer() method. But in serveCustomer(), no catch clause attached to the try block matches the thrown exception either. The virtual machine will therefore pop serveCustomer()'s stack frame and examine the next method up the invocation stack: the main() method of class Example7.

Here's the code for Example7:

// In Source Packet in file except/ex7/Example7.java
class Example7 {
    public static void main(String[] args)
        throws TemperatureException {
        // Create a new coffee cup.
        CoffeeCup cup = new CoffeeCup();
        // Create and serve a virtual customer.
        try {
            VirtualPerson cust = new VirtualPerson();
            VirtualCafe.serveCustomer(cust, cup);
        }
        catch (UnusualTasteException e) {
            System.out.println("This coffee has an unusual taste.");
        }
    }
}


This main() method was farsighted enough to surround its invocation of serveCustomer() with a try block that includes a catch clause for UnusualTasteException. Thus, the Java virtual machine will make the main() method's stack frame current and will continue execution at the first statement in the catch clause. The program will print:

This coffee has an unusual taste.


In the UnusualTasteException case, both drinkCoffee() and serveCoffee() methods completed abruptly. The Java virtual machine popped two frames from the Java stack, stopping its popping only when it reached the main() method.

The last case in this example occurs if the variable i in the drinkCoffee() method gets set to a value greater than 2. In this case, the switch statement will instantiate and throw a TemperatureException. When this exception is thrown, the Java virtual machine will go through its usual procedure of examining methods for catch clauses and popping frames for methods that can't handle the exception. The virtual machine will examine drinkCoffee(), pop its frame, examine serveCustomer(), pop its frame, examine main(), and pop its frame. At this point, however, the virtual machine has run out of frames. It can't go any further up the method invocation stack because main() was the first method invoked by the thread.

Because none of the methods on the invocation stack is prepared to handle the TemperatureException, the exception is "uncaught." It will be handled by a default handler and result in the death of the thread. Because this is the main thread of the Example7 application and the application didn't fire off any other threads that are still running when the main thread dies, the application terminates. (A dead thread doesn't always cause the death of its application, only when a dying thread is the last "non-daemon" thread running inside the application.) In most Java runtime environments, the default handler for an uncaught exception will print out a stack trace when a thread dies. For example, the java program from JDK 1.1.1 prints the following when the main thread of Example7 dies due to an uncaught TemperatureException:

TemperatureException
        at VirtualPerson.drinkCoffee(VirtualPerson.java:20)
        at VirtualCafe.serveCustomer(VirtualCafe.java:9)
        at Example7.main(Example7.java:12)


The throws clause

As you may have guessed from the examples above, the Java language requires that a method declare in a throws clause the exceptions that it may throw. A method's throws clause indicates to client programmers what exceptions they may have to deal with when they invoke the method.

For example, the drinkCoffee() method of class VirtualPerson, shown below, declares three exceptions in its throws clause: TooColdException, TemperatureException, and UnusualTasteException. These are the three exceptions that the method throws but doesn't catch. The method also may throw TooHotException, but this exception doesn't appear in the throws clause because drinkCoffee() catches and handles it internally. Only exceptions that will cause a method to complete abruptly should appear in its throws clause.

// In Source Packet in file except/ex7/VirtualPerson.java
class VirtualPerson {
    public void drinkCoffee(CoffeeCup cup) throws TooColdException,
        TemperatureException, UnusualTasteException {
        try {
            int i = (int) (Math.random() * 4.0);
            switch (i) {
            case 0:
                throw new TooHotException();
            case 1:
                throw new TooColdException();
            case 2:
                throw new UnusualTasteException();
            default:
                throw new TemperatureException();
            }
        }
        catch (TooHotException e) {
            System.out.println("This coffee is too hot.");
            // Customer will wait until it cools to an
            // acceptable temperature.
        }
    }
    //...
}


In the drinkCoffee() method above, each exception declared in the throws clause is explicitly thrown by the method via a throw statement. This is one of two ways a method can complete abruptly. The other way is by invoking another method that completes abruptly.

An example of this is VirtualCafe's serveCustomer() method, shown below, that invokes VirtualPerson's drinkCoffee() method. The serveCustomer() method contains no throw statements, but it does declare two exceptions in its throws clause: TemperatureException and UnusualTasteException. These are two of three exceptions that may be thrown by drinkCoffee(), which serveCustomer() invokes. The third exception, TooColdException, doesn't appear in the throws clause because serveCustomer() catches and handles it internally. Only those exceptions that will cause the serveCustomer() method to complete abruptly appear in its throws clause.

// In Source Packet in file except/ex7/VirtualCafe.java
class VirtualCafe {
    public static void serveCustomer(VirtualPerson cust,
        CoffeeCup cup)throws TemperatureException,
        UnusualTasteException {
        try {
            cust.drinkCoffee(cup);
        }
        catch (TooColdException e) {
            System.out.println("This coffee is too cold.");
            // Add more hot coffee...
        }
    }
}


Although a throws clause lists exceptions that may cause a method to complete abruptly, the list is not necessarily complete. Not everything that can be thrown by a method need be put in a throws clause.

Checked vs. unchecked exceptions

There are two kinds of exceptions in Java, checked and unchecked, and only checked exceptions need appear in throws clauses. The general rule is: Any checked exceptions that may be thrown in a method must either be caught or declared in the method's throws clause. Checked exceptions are so called because both the Java compiler and the Java virtual machine check to make sure this rule is obeyed.

Whether or not an exception is "checked" is determined by its position in the hierarchy of throwable classes. Figure 4 shows that some parts of the Throwable family tree contain checked exceptions while other parts contain unchecked exceptions. To create a new checked exception, you simply extend another checked exception. All throwables that are subclasses of Exception, but not subclasses of RuntimeException are checked exceptions.

Figure 4. Checked and unchecked throwables

The conceptual difference between checked and unchecked exceptions is that checked exceptions signal abnormal conditions that you want client programmers to deal with. For instance, because the drinkCoffee() method allocates memory with the new operator, it could potentially complete abruptly by throwing an OutOfMemoryError. This is not a checked exception, because it's not a subclass of Exception. It's a subclass of Error. Conceptually, OutOfMemoryError isn't a checked exception because you don't want client programmers to have to deal directly with the fact that drinkCoffee() could complete abruptly due to low memory.

When you place an exception in a throws clause, it forces client programmers who invoke your method to deal with the exception, either by catching it or by declaring it in their own throws clause. If they don't deal with the exception in one of these two ways, their classes won't compile. For example, because the drinkCoffee() method declares three exceptions in its throws clause, the serveCustomer() method, which invokes drinkCoffee(), has to deal with those three exceptions. In this case, serveCustomer() catches one exception, TooColdException, but not the other two. If serveCustomer() hadn't declared in its throws clause the other two exceptions, TemperatureException and UnusualTasteException, the VirtualCafe class would not have compiled.

Most unchecked throwables declared in java.lang (subclasses of Error and RuntimeException) are problems that would be detected by the Java virtual machine. Errors usually signal abnormal conditions that you wouldn't want a program to handle. Problems with linking, such as NoClassDefFoundError, or memory, such as StackOverflowError, could happen just about anywhere in a program. In the rare cases in which they happen, it is usually reasonable that the thread terminate.

Although most runtime exceptions (members of the RuntimeException family) also are thrown by the Java virtual machine itself, they usually are more an indication of software bugs. Problems with arrays, such as ArrayIndexOutOfBoundsException, or passed parameters, such as IllegalArgumentException, also could happen just about anywhere in a program. When exceptions like these are thrown, you'll want to fix the bugs that caused them to be thrown. You won't, however, want to force client programmers to wrap every invocation of a method that uses arrays with a catch clause for ArrayIndexOutOfBoundsException.

You can throw and catch unchecked exceptions just like checked exceptions, but the Java Language Specification advises against throwing errors. It is intended that errors be thrown only by the Java runtime. You may, however, reasonably throw runtime exceptions. You can throw a runtime exception declared in java.lang or declare your own subclasses of RuntimeException.

To decide whether to throw a checked exception or an unchecked runtime exception, you must look at the abnormal condition you are signalling. If you are throwing an exception to indicate an improper use of your class, you are signalling a software bug. The class of exception you throw probably should descend from RuntimeException, which will make it unchecked. Otherwise, if you are throwing an exception to indicate not a software bug but an abnormal condition that client programmers should deal with every time they use your method, your exception should be checked.

The finally clause

Once a Java virtual machine has begun to execute a block of code -- the statements between two matching curly braces -- it can exit that block in any of several ways. It could, for example, simply execute past the closing curly brace. It could encounter a break, continue, or return statement that causes it to jump out of the block from somewhere in the middle. Or, if an exception is thrown that isn't caught inside the block, it could exit the block while searching for a catch clause.

Given that a block can be exited in many ways, it is important to be able to ensure that something happens upon exiting a block, no matter how the block is exited. For example, if you open a file in a method, you may want to ensure the file gets closed no matter how the method completes. In Java, you express such a desire with a finally clause.

To use a finally clause, you simply: (1) Enclose the code that has multiple exit points in a try block; and (2) place the code that must be executed when the try block is exited in a finally clause.

Here's an example:

try {
    // Block of code with multiple exit points
}
finally {
    // Block of code that must always be executed when the try block
    // is exited, no matter how the try block is exited
}


At least one clause, either catch or finally, must be associated with each try block. If you have both catch clauses and a finally clause with the same try block, you must put the finally clause after all the catch clauses, as in:

// In Source Packet in file except/ex8/VirtualPerson.java
class VirtualPerson {
    public void drinkCoffee(CoffeeCup cup) {
        try {
            int i = (int) (Math.random() * 4.0);
            switch (i) {
            case 0:
                throw new TooHotException();
            case 1:
                throw new TooColdException();
            case 2:
                throw new UnusualTasteException();
            default:
                System.out.println("This coffee is great!");
            }
        }
        catch (TooHotException e) {
            System.out.println("This coffee is too hot.");
        }
        catch (TooColdException e) {
            System.out.println("This coffee is too cold.");
        }
        catch (UnusualTasteException e) {
            System.out.println("This coffee is too strong.");
        }
        finally {
            System.out.println("Can I please have another cup?");
        }
    }
    //...
}


If during execution of the code within a try block, an exception is thrown that is handled by a catch clause associated with the try block, the finally clause will be executed after the catch clause. For example, if a TooColdException exception is thrown during execution of the try block above, the program would print the following:

This coffee is too cold.
Can I please have another cup?


If an exception is thrown that is not handled by a catch clause associated with the try block, the finally clause is still executed. The Java virtual machine will execute the code of the finally clause before it continues searching elsewhere for an appropriate catch clause. There is no way to leave a try block without executing the code of its finally clause.

You can do anything inside a finally clause that you can do elsewhere, including executing break, continue, or return statements, or throwing exceptions. Such actions inside a finally clause, however, can have some surprising effects. For example, consider a finally clause that is entered because of an uncaught exception. If the finally clause executes a return, the method would complete normally via the return, not abruptly by throwing the exception. The exception would have in effect been handled by the finally clause instead of a catch clause.

As another example, consider a finally clause that is entered because a return true; statement was executed inside the try block. If the finally clause executes a return false; statement, the method will return false.

Conclusion

Java goes to great lengths to help you deal with error conditions. Java's exception mechanisms give you a structured way to perform a go-to from the place where an error occurs to the code that knows how to handle the error. These mechanisms also enable you to force client programmers (those who use your code by calling your methods) to deal with the possibility of an error condition encountered by your code. But Java's mechanisms do not force you to design your programs to take advantage of these capabilities. In the end, if you want your programs to handle error conditions in a structured, methodical way, you must use the exception mechanisms correctly.

For advice on how to put the exception mechanisms described in this article to use in your programs and designs, see this month's Design Techniques column, "Designing with exceptions."

About the author

Bill Venners has been writing software professionally for 12 years. Based in Silicon Valley, he provides software consulting and training services under the name Artima Software Company. Over the years he has developed software for the consumer electronics, education, semiconductor, and life insurance industries. He has programmed in many languages on many platforms: assembly language on various microprocessors, C on Unix, C++ on Windows, Java on the Web. He is author of the book: Inside the Java Virtual Machine, published by McGraw-Hill.
  • Print
  • Feedback

Resources