Recommended: Sing it, brah! 5 fabulous songs for developers
JW's Top 5
Optimize with a SATA RAID Storage Solution
Range of capacities as low as $1250 per TB. Ideal if you currently rely on servers/disks/JBODs
Page 2 of 3
Thus, inheritance helps make code easier to change if the needed change involves adding a new subclass. This, however, is not the only kind of change you may need to make.
In an inheritance relationship, superclasses are often said to be "fragile," because one little change to a superclass can ripple out and require changes in many other places in the application's code. To be more specific, what is actually fragile about a superclass is its interface. If the superclass is well-designed, with a clean separation of interface and implementation in the object-oriented style, any changes to the superclass's implementation shouldn't ripple at all. Changes to the superclass's interface, however, can ripple out and break any code that uses the superclass or any of its subclasses. What's more, a change in the superclass interface can break the code that defines any of its subclasses.
For example, if you change the return type of a public method in class Fruit (a part of Fruit's interface), you can break the code that invokes that method on any reference of type Fruit or any subclass of Fruit. In addition, you break the code that defines any subclass of Fruit that overrides the method. Such subclasses won't compile until you go and change the return value of the overridden method
to match the changed method in superclass Fruit.
Inheritance is also sometimes said to provide "weak encapsulation," because if you have code that directly uses a subclass,
such as Apple, that code can be broken by changes to a superclass, such as Fruit. One of the ways to look at inheritance is that it allows subclass code to reuse superclass code. For example, if Apple doesn't override a method defined in its superclass Fruit, Apple is in a sense reusing Fruit's implementation of the method. But Apple only "weakly encapsulates" the Fruit code it is reusing, because changes to Fruit's interface can break code that directly uses Apple.
Given that the inheritance relationship makes it hard to change the interface of a superclass, it is worth looking at an alternative approach provided by composition. It turns out that when your goal is code reuse, composition provides an approach that yields easier-to-change code.
Code reuse via inheritance For an illustration of how inheritance compares to composition in the code reuse department, consider this very simple example:
class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public int peel() {
System.out.println("Peeling is appealing.");
return 1;
}
}
class Apple extends Fruit {
}
class Example1 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
When you run the Example1 application, it will print out "Peeling is appealing.", because Apple inherits (reuses) Fruit's implementation of peel(). If at some point in the future, however, you wish to change the return value of peel() to type Peel, you will break the code for Example1. Your change to Fruit breaks Example1's code even though Example1 uses Apple directly and never explicitly mentions Fruit.
Here's what that would look like:
class Peel {
private int peelCount;
public Peel(int peelCount) {
this.peelCount = peelCount;
}
public int getPeelCount() {
return peelCount;
}
//...
}
class Fruit {
// Return a Peel object that
// results from the peeling activity.
public Peel peel() {
System.out.println("Peeling is appealing.");
return new Peel(1);
}
}
// Apple still compiles and works fine
class Apple extends Fruit {
}
// This old implementation of Example1
// is broken and won't compile.
class Example1 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
Code reuse via composition Composition provides an alternative way for Apple to reuse Fruit's implementation of peel(). Instead of extending Fruit, Apple can hold a reference to a Fruit instance and define its own peel() method that simply invokes peel() on the Fruit. Here's the code:
class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public int peel() {
System.out.println("Peeling is appealing.");
return 1;
}
}
class Apple {
private Fruit fruit = new Fruit();
public int peel() {
return fruit.peel();
}
}
class Example2 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
In the composition approach, the subclass becomes the "front-end class," and the superclass becomes the "back-end class." With inheritance, a subclass automatically inherits an implemenation of any non-private superclass method that it doesn't override. With composition, by contrast, the front-end class must explicitly invoke a corresponding method in the back-end class from its own implementation of the method. This explicit call is sometimes called "forwarding" or "delegating" the method invocation to the back-end object.
The composition approach to code reuse provides stronger encapsulation than inheritance, because a change to a back-end class
needn't break any code that relies only on the front-end class. For example, changing the return type of Fruit's peel() method from the previous example doesn't force a change in Apple's interface and therefore needn't break Example2's code.
Here's how the changed code would look:
class Peel {
private int peelCount;
public Peel(int peelCount) {
this.peelCount = peelCount;
}
public int getPeelCount() {
return peelCount;
}
//...
}
class Fruit {
// Return int number of pieces of peel that
// resulted from the peeling activity.
public Peel peel() {
System.out.println("Peeling is appealing.");
return new Peel(1);
}
}
// Apple must be changed to accomodate
// the change to Fruit
class Apple {
private Fruit fruit = new Fruit();
public int peel() {
Peel peel = fruit.peel();
return peel.getPeelCount();
}
}
// This old implementation of Example2
// still works fine.
class Example1 {
public static void main(String[] args) {
Apple apple = new Apple();
int pieces = apple.peel();
}
}
This example illustrates that the ripple effect caused by changing a back-end class stops (or at least can stop) at the front-end
class. Although Apple's peel() method had to be updated to accommodate the change to Fruit, Example2 required no changes.
So how exactly do composition and inheritance compare? Here are several points of comparison:
So how do all these comparisons between composition and inheritance help you in your designs? Here are a few guidelines that reflect how I tend to select between composition and inheritance.
Make sure inheritance models the is-a relationship My main guiding philosophy is that inheritance should be used only when a subclass is-a superclass. In the example above, an Apple likely is-a Fruit, so I would be inclined to use inheritance.